Getting Started with TAM S GPI O interfaces

GPIO isahighly flexible interface that can be configured to meet a variety of user needs. Thisflexihility does present
challenges however, due to the number of configurable parameters and the unlimited degree of freedom in designing the
hardware at the user end.

The interfaces are capable of either handshake operation, or a simple read bits/set bits mode of operation. In compatibility
mode, there are 16 input and 16 output lines, plus two status inputs and two control outputs. In enhanced mode, the 16 input
lines can be used in abi-directional mode (handshake or non-handshake), and the 16 output lines can be set to arbitrary
patterns out in a non-handshake mode. Generally the handshake operation will be used with high-speed data transfer, the
non-handshake mode will be used with mechanical handlers, used to control relays or lights, monitoring switches, etc.

The DOUT lines are high-voltage, high-current (30 volts, 40 ma) open collector TTL , with optional pullupsto 5 volts
provided. The DIN linesarerestricted to TTL levels, both in compatibility and enhanced mode.

For output operation, there isa PCTL delay parameter that can be set to allow settling time on the DOUT lines before the
handshake proceeds. Thisis frequently needed when driving long cables.

For input operation, the user circuitry is responsible for delaying the handshake after driving datato the DIN lines of the
interface, if needed.

Non-Handshake Example

Thisisthe easiest mode to configure, since no circuitry need be used with the handshake lines. Sample C codeis given here.
Thisuses SICL calls, which can be used in either the Windows or Linux environment when the appropriate 1/O libraries and
interface drivers are loaded on the system.

/*
Sanpl e program denonstrating non- handshake operation for
input and output with GPIO cards

Requires an interface configured with SICL name of 'gpio
*/

#i ncl ude <sicl. h>
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

mai n(argc, argv) {
INST id
int i
unsi gned | ong data

i d=i open("gpi 0");

i f(id==0) {
printf("Error opening 'gpio device file\n")
exit(1);

}

i gpi osetwi dth(id, 16); /] set 16 bit operation

for (i=0;i<65536;i++) igpioctrl(id,|_GPIODATAi); // cycle through all patterns
igpioctrl(id,|_GPl ODATA 0x1234); /'l leave distinctive pattern on output bus
igpiostat(id, |_GPIODATA &data); // read data pattern on input bus

printf("DIN data = % hex\n", dat a)

Handshake Example

Handshake operation requires more work to create appropriate user circuitry. Both inputs and outputs can be handshaken, the
circuitry must monitor the I/O line if both are being used. The handshake is atwo-wire interlocked handshake, which allows
the user circuitry to pace the transfer as needed.

For purposes of this document, assume that none of the optional inversions of control or data lines are used. Turn on the
optional pullup resistors. We'll use the default data polarity, where alogical ‘1’ isalow level.

For read operations (into the gpio interface), the Ready (RDY') clock option will be used. This latches the data internally at
the second edge of PFLG, which isthe end of the handshake sequence. PSTS (Peripheral Status) is another input to the gpio
interface which can be used to hold off a handshake. It is configured here to be High=OK, and the pullup resistor pulls up the
level so that handshakes can proceed. Five microsecondsisused asa PCTL delay, to allow substantial setting time on
outputs.

The configuration on Windows should look like this:

TAMS 62622 Configuration: Rotary Switch = 0

[uestionz? Press the Help button below. ‘@TAM S

|nterface Hame: |
Logical Uit: | 12 :] DataPort: | Compatibilin

Electrical to Lagical Polarity — Handshake: [FULL v| Cancel

[~ DOUT: Hi=1 Fead Clock: |READY "’l
™ DIN: Hi=1 Help |

[v Clear DOUT at Reset
[PSTS: Hl =HMat 0K

I_ PFLG: HI = HEEId_'r' FCTL DEIEI_';': 5000 ns Defaults
[PCTL: HI =Set Must be beetwen 90 and 51410 ns

Iv PCTL.DOUT, CTLO.CTLY, 1/0, and PRESET Pull-up Resistors ON

On aLinux system, it looks like:

- I/O Setup for linux T
TAMS 82622 GPIO Interface
Logical Unit #: |EB i:
|Symbolic Name: ||gpio
Dip Switch Setting: |||J_i|I
Polarity Settings:

Data Out: Low=1 |

Data In: low=1 —|

PSTS: Low = Not Ok — |

PFLG: Low = Ready — |

PCTL: Low = Set |

Data Port Mode: Compatibility — |

Clear DOUT on Reset: W
Handshake Mode: Full -|

Pullup Resistors: On - |

Data In Clocking
MSB: Ready PFLG — | LSB: Ready PFLG — |

PCTL Delay:l 5000ns

Vralid values are 30ns to 61410ns

0K | Cancel | Defaults |

The corresponding entry in /etc/opt/sicl/hwconfig.cf is:

TAMS 82622 GPI O Interface
22 gpio t82622 0 0 0b100000 0x10 0x22 5000ns

In this example, a state machine with 3 inputs and 1 output is used. Theinputs are the PCTL handshake line, the I/O line,
and GO from the user system. Output is PFLG, the handshake line from the external circuitry. Itsrising edge could be used
to latch datainto the circuitry from awrite operation, or its falling edge could clock external circuitry to drive the next data
on the bus. GO isasignal from the external circuitry, indicating the hardware can accept, or source, the next piece of data.

FuIL

FRETTIREEN] |_|
T HE -

FET.

#i2 j-118

+

FRLLA |:|

|:|
A2 VEIWER=

PN
Fri

qWR =

T, L
L] »C)c e
A __,“:" .

20TRUT

i
l{__ﬂ—h\.\.f__.u—"'_"‘-au/.u—u\.
A JIL FD oL Wﬂ'ﬁ.\
A o
TEURT AN oo s '\\.
* i
SPeTLE GO FICTLRGD] o
L - % __:/
| BEL) |: ARET
K — " \x._,-r'/
w]
—_
-
| ,a:srr_l)
I\'-\. r

LB LY

DaTA GLE

The state transition diagram for the state machine is shown above, and alisting of next state information and output is shown
here:

Current state Next State Outputs
IDL_RD if *PCTL & GO then DELAY
else if *I/O then IDL_WRT
else IDL_RD
IDL_WRT if *PCTL & GO then ASST_W
else if /0 then IDL_RD
elseIDL_WRT
DELAY ASST_R
ASST R if PCTL then IDL_RD PFLG
else ASST_R
ASST W if PCTL then IDL_WRT PFLG
else ASST_ W

A program appropriate for thisexampleis:

/*
Sanpl e program denonstrating handshake operation for
input and output with GPlI O cards.
Requires an interface configured with SICL name of 'gpio
Invert polarity of PCTL, not PFLG

*/

#i ncl ude <sicl. h>
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

mai n(argc, argv) {

I NST id;
int i;
int reason;

unsi gned | ong data, actual;
unsi gned char buf[4];

i d=i open("gpi 0");

if(id==0) {
printf("Error opening 'gpio' device file\n");
exit(1);
}
i gpi osetwi dth(id, 16); [/l set 16 bit operation
for (i=0;i<65536;i++) {
buf[0] =1i;
buf[1] = i/256;
iwite(id, buf, 2, 0, &ctual); // cycle through all patterns
}
buf[0] = 0x34;
buf[1] = 0x12;
buf[2] = 0x78;
buf [3] = 0x56;
iwite(id,buf, 4, 0, &ctual); // wite "1234h", then "5678h"
if(actual !'=4) printf("Error, didn't wite 4 bytes\n");
iread(id, buf, 2, &eason , &actual); /] read data pattern on input bus

printf("D N data = 9% hex\n", 256*buf[1] + buf[0]);

Simplified Handshake Example

Asasimpler example, assume the data transfer is output-only, and the external circuitry can keep up with the max data rates.
PFL G can be driven from the PCTL line, and the required inversion can be implemented with checking the PCTL inversion
box. Settling time on the busis controlled by the PCTL delay, which can be used to slow down the transfer even further if

desired. The I/O line does not need to be monitored, because all transfers are output only. A short, positive going pulse
appears on the handshake lines that can be used to latch data locally.

FILTASD |_

FNTCHES |_L

B

FrLe

i

Erua

This example could be expanded to make a simple test hood for testing purposes by just connecting the DOUT lines to the
corresponding DIN lines, and removing the latches if desired. No settling time is needed for reading the data since it will
have settled long before aread operation can follow awrite. Theinternal pullup resistors on the interface card are entirely
adequate for providing good signal quality in this situation.

Enhanced Mode Example

Enhanced mode can be used when there is a need to maximize the number of output lines available. The lines |abeled DIN
become a bi-directional bus with handshake capability, and the DOUT lines can be set to arbitrary patternsin a non-
handshake mode.

The program also demonstrates setting CTL bits and reading STI bits, which is done independently of any handshake.
Enhance mode should be set in the GUI’s, and appropriate external hardware provided to implement a bi-directional bus on
the DIN lines. Do not drive data onto that bus from the external circuitry when the gpio interface is driving it with an output
operation.

/*
Sanpl e program denonstrating handshake operation for
input and output with GPl O cards in Enhanced Mbde.
Al'so includes setting CONTROL bits, reading STATUS bits.
Requires an interface configured with SICL name of 'gpio'.
Al so requires external hardware to inplenent the handshake.
*/

#i ncl ude <sicl. h>
#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>

mai n(argc, argv) {

INST id;
int i,aa;
int reason;

unsi gned |l ong data, actual;
unsi gned char buf[4];

i d=i open("gpi 0");

if(id==0) {
printf("Error opening 'gpio device file\n");
exit(1);

}

i gpi osetwi dth(id, 16); [/l set 16 bit operation

for (i=0;i<65536;i++) {
buf[0] =1i;
buf[1] = i/256;
iwite(id, buf, 2, 0, &ctual); // cycle through all patterns on DIN |lines

}

buf[0] = 0x34;

buf[1] = 0x12;

buf[2] = 0x78;

buf [3] = 0x56;

iwite(id,buf, 4, 0, &ctual); // wite "1234h", then "5678h" on DIN |lines
if(actual !'=4) printf("Error, didn't wite 4 bytes\n");

iread(id, buf, 2, &eason , &actual); /1l read data pattern on DIN lines
if(actual !'=2) printf("Error, didn't read 2 bytes\n");
printf("DIN data = 9% hex\n", 256*buf[1] + buf[0]);

aa=igpioctrl (id, |I_GPlO AUX, 0x9876); /1l set pattern on DOUT (AUX) |ines
if(aa) printf("Setting AUX lines failed\n");

aa=igpioctrl(id, I_GPIOCTR,, |_GPIOCTRL_CTLO); /1 set CTLO, clear CTL1
if(aa) printf("Setting CTL lines failed\n");

aa=i gpiostat (id, |_GPIO STAT, &data); /l read STI1, STIO

if(aa) printf("Reading STAT lines failed\n");
printf("STI1 = %®Ri\n", (data & |_GPIO STAT_STI1) >> 1); [/ display STI1
printf("STIO = %Ri\n", data & |_GPl O STAT_STIO0); /1 display STIO

Electrical Consider ations

The DIN lines and other input lines are TTL inputs, biased to a high level when not connected to external circuitry. Care
must be taken to insure the input voltages do not exceed normal TTL operating limits.

The DOUT lines are open-collector high voltage/high current (30 volts, 40 ma) outputs. There are weak pullups available to
5 volts, but these only provide 1 ma per line. The x2622 product has socketed resistors that allow lower-value resistors to be
used, to increase the pullup current if needed. See the product manual for details. External pullup resistors may also be used.

If driving long cables, the drive capability of the circuitry becomes important for maintaining adeguate signal integrity and
good performance. See“How to drive long GPIO cables’, available in the Support section of the TAMS website.

