
Getting Started with TAMS GPIO interfaces

GPIO is a highly flexible interface that can be configured to meet a variety of user needs. This flexibility does present
challenges however, due to the number of configurable parameters and the unlimited degree of freedom in designing the
hardware at the user end.

The interfaces are capable of either handshake operation, or a simple read bits/set bits mode of operation. In compatibility
mode, there are 16 input and 16 output lines, plus two status inputs and two control outputs. In enhanced mode, the 16 input
lines can be used in a bi-directional mode (handshake or non-handshake), and the 16 output lines can be set to arbitrary
patterns out in a non-handshake mode. Generally the handshake operation will be used with high-speed data transfer, the
non-handshake mode will be used with mechanical handlers, used to control relays or lights, monitoring switches, etc.

The DOUT lines are high-voltage, high-current (30 volts, 40 ma) open collector TTL , with optional pullups to 5 volts
provided. The DIN lines are restricted to TTL levels, both in compatibility and enhanced mode.

For output operation, there is a PCTL delay parameter that can be set to allow settling time on the DOUT lines before the
handshake proceeds. This is frequently needed when driving long cables.

For input operation, the user circuitry is responsible for delaying the handshake after driving data to the DIN lines of the
interface, if needed.

Non-Handshake Example

This is the easiest mode to configure, since no circuitry need be used with the handshake lines. Sample C code is given here.
This uses SICL calls, which can be used in either the Windows or Linux environment when the appropriate I/O libraries and
interface drivers are loaded on the system.

/*
Sample program demonstrating non-handshake operation for
input and output with GPIO cards.

Requires an interface configured with SICL name of 'gpio'
*/

#include <sicl.h>
#include <stdio.h>
#include <stdlib.h>

main(argc,argv) {
 INST id;
 int i;
 unsigned long data;

 id=iopen("gpio");
 if(id==0) {
 printf("Error opening 'gpio' device file\n");
 exit(1);
 }

 igpiosetwidth(id, 16); // set 16 bit operation

 for (i=0;i<65536;i++) igpioctrl(id,I_GPIO_DATA,i); // cycle through all patterns
 igpioctrl(id,I_GPIO_DATA,0x1234); // leave distinctive pattern on output bus
 igpiostat(id, I_GPIO_DATA, &data); // read data pattern on input bus
 printf("DIN data = %X hex\n",data);

}

Handshake Example

Handshake operation requires more work to create appropriate user circuitry. Both inputs and outputs can be handshaken, the
circuitry must monitor the I/O line if both are being used. The handshake is a two-wire interlocked handshake, which allows
the user circuitry to pace the transfer as needed.

For purposes of this document, assume that none of the optional inversions of control or data lines are used. Turn on the
optional pullup resistors. We’ll use the default data polarity, where a logical ‘1’ is a low level.

For read operations (into the gpio interface), the Ready (RDY) clock option will be used. This latches the data internally at
the second edge of PFLG, which is the end of the handshake sequence. PSTS (Peripheral Status) is another input to the gpio
interface which can be used to hold off a handshake. It is configured here to be High=OK, and the pullup resistor pulls up the
level so that handshakes can proceed. Five microseconds is used as a PCTL delay, to allow substantial setting time on
outputs.

The configuration on Windows should look like this:

On a Linux system, it looks like:

The corresponding entry in /etc/opt/sicl/hwconfig.cf is:

TAMS 82622 GPIO Interface
22 gpio t82622 0 0 0b100000 0x10 0x22 5000ns

In this example, a state machine with 3 inputs and 1 output is used. The inputs are the PCTL handshake line, the I/O line,
and GO from the user system. Output is PFLG, the handshake line from the external circuitry. Its rising edge could be used
to latch data into the circuitry from a write operation, or its falling edge could clock external circuitry to drive the next data
on the bus. GO is a signal from the external circuitry, indicating the hardware can accept, or source, the next piece of data.

The state transition diagram for the state machine is shown above, and a listing of next state information and output is shown
here:

Current state Next State Outputs

IDL_RD if *PCTL & GO then DELAY
else if *I/O then IDL_WRT

 else IDL_RD

IDL_WRT if *PCTL & GO then ASST_W
else if I/O then IDL_RD

else IDL_WRT

DELAY ASST_R

ASST_R if PCTL then IDL_RD PFLG
else ASST_R

ASST_W if PCTL then IDL_WRT PFLG
else ASST_W

A program appropriate for this example is:

/*
Sample program demonstrating handshake operation for
input and output with GPIO cards.

Requires an interface configured with SICL name of 'gpio'
 Invert polarity of PCTL, not PFLG.
*/

#include <sicl.h>
#include <stdio.h>
#include <stdlib.h>

main(argc,argv) {
 INST id;
 int i;
 int reason;
 unsigned long data, actual;
 unsigned char buf[4];

 id=iopen("gpio");
 if(id==0) {
 printf("Error opening 'gpio' device file\n");
 exit(1);
 }

 igpiosetwidth(id, 16); // set 16 bit operation

 for (i=0;i<65536;i++) {
 buf[0] = i;
 buf[1] = i/256;
 iwrite(id,buf, 2, 0, &actual); // cycle through all patterns
 }

 buf[0] = 0x34;
 buf[1] = 0x12;
 buf[2] = 0x78;
 buf[3] = 0x56;
 iwrite(id,buf, 4, 0, &actual); // write "1234h", then "5678h"
 if(actual != 4) printf("Error, didn't write 4 bytes\n");

 iread(id, buf, 2, &reason , &actual); // read data pattern on input bus
 printf("DIN data = %X hex\n",256*buf[1] + buf[0]);
}

Simplified Handshake Example

As a simpler example, assume the data transfer is output-only, and the external circuitry can keep up with the max data rates.

PFLG can be driven from the PCTL line, and the required inversion can be implemented with checking the PCTL inversion
box. Settling time on the bus is controlled by the PCTL delay, which can be used to slow down the transfer even further if
desired. The I/O line does not need to be monitored, because all transfers are output only. A short, positive going pulse
appears on the handshake lines that can be used to latch data locally.

This example could be expanded to make a simple test hood for testing purposes by just connecting the DOUT lines to the
corresponding DIN lines, and removing the latches if desired. No settling time is needed for reading the data since it will
have settled long before a read operation can follow a write. The internal pullup resistors on the interface card are entirely
adequate for providing good signal quality in this situation.

Enhanced Mode Example

Enhanced mode can be used when there is a need to maximize the number of output lines available. The lines labeled DIN
become a bi-directional bus with handshake capability, and the DOUT lines can be set to arbitrary patterns in a non-
handshake mode.

The program also demonstrates setting CTL bits and reading STI bits, which is done independently of any handshake.
Enhance mode should be set in the GUI’s, and appropriate external hardware provided to implement a bi-directional bus on
the DIN lines. Do not drive data onto that bus from the external circuitry when the gpio interface is driving it with an output
operation.

/*
Sample program demonstrating handshake operation for
input and output with GPIO cards in Enhanced Mode.

Also includes setting CONTROL bits, reading STATUS bits.

Requires an interface configured with SICL name of 'gpio'.
Also requires external hardware to implement the handshake.

*/

#include <sicl.h>
#include <stdio.h>
#include <stdlib.h>

main(argc,argv) {
 INST id;
 int i,aa;
 int reason;
 unsigned long data, actual;
 unsigned char buf[4];

 id=iopen("gpio");
 if(id==0) {
 printf("Error opening 'gpio' device file\n");
 exit(1);
 }

 igpiosetwidth(id, 16); // set 16 bit operation

 for (i=0;i<65536;i++) {
 buf[0] = i;
 buf[1] = i/256;
 iwrite(id,buf, 2, 0, &actual); // cycle through all patterns on DIN lines
 }

 buf[0] = 0x34;
 buf[1] = 0x12;
 buf[2] = 0x78;
 buf[3] = 0x56;
 iwrite(id,buf, 4, 0, &actual); // write "1234h", then "5678h" on DIN lines
 if(actual != 4) printf("Error, didn't write 4 bytes\n");

 iread(id, buf, 2, &reason , &actual); // read data pattern on DIN lines
 if(actual != 2) printf("Error, didn't read 2 bytes\n");
 printf("DIN data = %X hex\n",256*buf[1] + buf[0]);

 aa=igpioctrl(id, I_GPIO_AUX, 0x9876); // set pattern on DOUT (AUX) lines
 if(aa) printf("Setting AUX lines failed\n");
 aa=igpioctrl(id, I_GPIO_CTRL, I_GPIO_CTRL_CTL0); // set CTL0, clear CTL1
 if(aa) printf("Setting CTL lines failed\n");
 aa=igpiostat(id, I_GPIO_STAT, &data); // read STI1, STI0
 if(aa) printf("Reading STAT lines failed\n");
 printf("STI1 = %2i\n", (data & I_GPIO_STAT_STI1) >> 1); // display STI1
 printf("STI0 = %2i\n", data & I_GPIO_STAT_STI0); // display STI0

}

Electrical Considerations

The DIN lines and other input lines are TTL inputs, biased to a high level when not connected to external circuitry. Care
must be taken to insure the input voltages do not exceed normal TTL operating limits.

The DOUT lines are open-collector high voltage/high current (30 volts, 40 ma) outputs. There are weak pullups available to
5 volts, but these only provide 1 ma per line. The x2622 product has socketed resistors that allow lower-value resistors to be
used, to increase the pullup current if needed. See the product manual for details. External pullup resistors may also be used.

If driving long cables, the drive capability of the circuitry becomes important for maintaining adequate signal integrity and
good performance. See “How to drive long GPIO cables”, available in the Support section of the TAMS website.

